Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Transplant ; 33: 9636897241249556, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742734

RESUMEN

Pancreatic islet transplantation is one of the clinical options for certain types of diabetes. However, difficulty in maintaining islets prior to transplantation limits the clinical expansion of islet transplantations. Our study introduces a dynamic culture platform developed specifically for primary human islets by mimicking the physiological microenvironment, including tissue fluidics and extracellular matrix support. We engineered the dynamic culture system by incorporating our distinctive microwell-patterned porous collagen scaffolds for loading isolated human islets, enabling vertical medium flow through the scaffolds. The dynamic culture system featured four 12 mm diameter islet culture chambers, each capable of accommodating 500 islet equivalents (IEQ) per chamber. This configuration calculates > five-fold higher seeding density than the conventional islet culture in flasks prior to the clinical transplantations (442 vs 86 IEQ/cm2). We tested our culture platform with three separate batches of human islets isolated from deceased donors for an extended period of 2 weeks, exceeding the limits of conventional culture methods for preserving islet quality. Static cultures served as controls. The computational simulation revealed that the dynamic culture reduced the islet volume exposed to the lethal hypoxia (< 10 mmHg) to ~1/3 of the static culture. Dynamic culture ameliorated the morphological islet degradation in long-term culture and maintained islet viability, with reduced expressions of hypoxia markers. Furthermore, dynamic culture maintained the islet metabolism and insulin-secreting function over static culture in a long-term culture. Collectively, the physiological microenvironment-mimetic culture platform supported the viability and quality of isolated human islets at high-seeding density. Such a platform has a high potential for broad applications in cell therapies and tissue engineering, including extended islet culture prior to clinical islet transplantations and extended culture of stem cell-derived islets for maturation.


Asunto(s)
Colágeno , Islotes Pancreáticos , Andamios del Tejido , Humanos , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Andamios del Tejido/química , Porosidad , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo de Célula/instrumentación , Trasplante de Islotes Pancreáticos/métodos
2.
Am J Physiol Cell Physiol ; 326(4): C1262-C1271, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497111

RESUMEN

Defining the oxygen level that induces cell death within 3-D tissues is vital for understanding tissue hypoxia; however, obtaining accurate measurements has been technically challenging. In this study, we introduce a noninvasive, high-throughput methodology to quantify critical survival partial oxygen pressure (pO2) with high spatial resolution within spheroids by using a combination of controlled hypoxic conditions, semiautomated live/dead cell imaging, and computational oxygen modeling. The oxygen-permeable, micropyramid patterned culture plates created a precisely controlled oxygen condition around the individual spheroid. Live/dead cell imaging provided the geometric information of the live/dead boundary within spheroids. Finally, computational oxygen modeling calculated the pO2 at the live/dead boundary within spheroids. As proof of concept, we determined the critical survival pO2 in two types of spheroids: isolated primary pancreatic islets and tumor-derived pseudoislets (2.43 ± 0.08 vs. 0.84 ± 0.04 mmHg), indicating higher hypoxia tolerance in pseudoislets due to their tumorigenic origin. We also applied this method for evaluating graft survival in cell transplantations for diabetes therapy, where hypoxia is a critical barrier to successful transplantation outcomes; thus, designing oxygenation strategies is required. Based on the elucidated critical survival pO2, 100% viability could be maintained in a typically sized primary islet under the tissue pO2 above 14.5 mmHg. This work presents a valuable tool that is potentially instrumental for fundamental hypoxia research. It offers insights into physiological responses to hypoxia among different cell types and may refine translational research in cell therapies.NEW & NOTEWORTHY Our study introduces an innovative combinatory approach for noninvasively determining the critical survival oxygen level of cells within small cell spheroids, which replicates a 3-D tissue environment, by seamlessly integrating three pivotal techniques: cell death induction under controlled oxygen conditions, semiautomated imaging that precisely identifies live/dead cells, and computational modeling of oxygen distribution. Notably, our method ensures high-throughput analysis applicable to various cell types, offering a versatile solution for researchers in diverse fields.


Asunto(s)
Islotes Pancreáticos , Oxígeno , Humanos , Oxígeno/metabolismo , Hipoxia/metabolismo , Islotes Pancreáticos/metabolismo , Esferoides Celulares/metabolismo , Hipoxia de la Célula , Supervivencia Celular
3.
Cell Transplant ; 33: 9636897231224174, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38235662

RESUMEN

Fireflies produce light through luciferase-catalyzed reactions involving luciferin, oxygen, and adenosine triphosphate, distinct from other luminescent organisms. This unique feature has revolutionized molecular biology and physiology, serving as a valuable tool for cellular research. Luciferase-based bioluminescent imaging enabled the creation of transgenic animals, such as Firefly Rats. Firefly Rats, created in 2006, ubiquitously express luciferase and have become a critical asset in scientific investigations. These rats have significantly contributed to transplantation and tissue engineering studies. Their low immunogenicity reduces graft rejection risk, making them ideal for long-term tracking of organ/tissue/cellular engraftments. Importantly, in the islet transplantation setting, the ubiquitous luciferase expression in these rats does not alter islet morphology or function, ensuring accurate assessments of engrafted islets. Firefly Rats have illuminated the path of transplantation research worldwide for over a decade and continue accelerating scientific advancements in many fields.


Asunto(s)
Luciérnagas , Trasplante de Islotes Pancreáticos , Animales , Ratas , Luciérnagas/metabolismo , Luciferasas , Animales Modificados Genéticamente , Diagnóstico por Imagen , Luciferasas de Luciérnaga/genética , Luciferasas de Luciérnaga/metabolismo , Mediciones Luminiscentes
4.
Am J Transplant ; 24(2): 177-189, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37813189

RESUMEN

Present-day islet culture methods provide short-term maintenance of cell viability and function, limiting access to islet transplantation. Attempts to lengthen culture intervals remain unsuccessful. A new method was developed to permit the long-term culture of islets. Human islets were embedded in polysaccharide 3D-hydrogel in cell culture inserts or gas-permeable chambers with serum-free CMRL 1066 supplemented media for up to 8 weeks. The long-term cultured islets maintained better morphology, cell mass, and viability at 4 weeks than islets in conventional suspension culture. In fact, islets cultured in the 3D-hydrogel retained ß cell mass and function on par with freshly isolated islets in vitro and, when transplanted into diabetic mice, restored glucose balance similar to fresh islets. Using gas-permeable chambers, the 3D-hydrogel culture method was scaled up over 10-fold and maintained islet viability and function, although the cell mass recovery rate was 50%. Additional optimization of scale-up methods continues. If successful, this technology could afford flexibility and expand access to islet transplantation, especially single-donor islet-after-kidney transplantation.


Asunto(s)
Diabetes Mellitus Experimental , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Humanos , Ratones , Animales , Técnicas de Cultivo de Célula , Hidrogeles , Insulina , Supervivencia Celular
5.
Cell Transplant ; 32: 9636897231182497, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37345228

RESUMEN

"Firefly rats" ubiquitously express the luciferase reporter gene under the control of constitutively active ROSA26 promoter in inbred Lewis rats. Due to the minimal immunogenicity of luciferase, wide applications of Firefly rats have been reported in solid organ/cell transplantation studies for in vivo imaging, permitting quantitative and non-invasive tracking of the transplanted graft. ROSA26 is a non-coding gene and generally does not affect the expression of other endogenous genes. However, the effect of ubiquitous luciferase expression on islet morphology and function has not been thoroughly investigated, which is critical for the use of Firefly rats as islet donors in islet transplantation studies. Accordingly, in vivo glucose homeostasis (i.e., islet function in the native pancreas) was compared between age-matched luciferase-expressing Firefly rats and non-luciferase-expressing rats. In vivo assessments demonstrated no statistical difference between these rats in non-fasting blood glucose levels, intraperitoneal glucose tolerance tests, and glucose-stimulated serum C-peptide levels. Furthermore, islets were isolated from both rats to compare the morphology, function, and metabolism in vitro. Isolated islets from both rats exhibited similar in vitro characteristics in post-isolation islet yield, islet size, beta cell populations, insulin content per islet, oxygen consumption rate, and glucose-stimulated insulin secretion. In conclusion, ubiquitous luciferase expression in Firefly rats does not affect their islet morphology, metabolism, and function; this finding is critical and enables the use of isolated islets from Firefly rats for the dual assessment of islet graft function and bioluminescence imaging of islet grafts.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Ratas , Animales , Luciérnagas/metabolismo , Ratas Endogámicas Lew , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Luciferasas , Glucemia/metabolismo
6.
Front Endocrinol (Lausanne) ; 13: 1015063, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465665

RESUMEN

Background: Transplantation of the human pancreatic islets is a promising approach for specific types of diabetes to improve glycemic control. Although effective, there are several issues that limit the clinical expansion of this treatment, including difficulty in maintaining the quality and quantity of isolated human islets prior to transplantation. During the culture, we frequently observe the multiple islets fusing together into large constructs, in which hypoxia-induced cell damage significantly reduces their viability and mass. In this study, we introduce the microwell platform optimized for the human islets to prevent unsolicited fusion, thus maintaining their viability and mass in long-term cultures. Method: Human islets are heterogeneous in size; therefore, two different-sized microwells were prepared in a 35 mm-dish format: 140 µm × 300 µm-microwells for <160 µm-islets and 200 µm × 370 µm-microwells for >160 µm-islets. Human islets (2,000 islet equivalent) were filtered through a 160 µm-mesh to prepare two size categories for subsequent two week-cultures in each microwell dish. Conventional flat-bottomed 35 mm-dishes were used for non-filtered islets (2,000 islet equivalent/2 dishes). Post-cultured islets are collected to combine in each condition (microwells and flat) for the comparisons in viability, islet mass, morphology, function and metabolism. Islets from three donors were independently tested. Results: The microwell platform prevented islet fusion during culture compared to conventional flat bottom dishes, which improved human islet viability and mass. Islet viability and mass on the microwells were well-maintained and comparable to those in pre-culture, while flat bottom dishes significantly reduced islet viability and mass in two weeks. Morphology assessed by histology, insulin-secreting function and metabolism by oxygen consumption did not exhibit the statistical significance among the three different conditions. Conclusion: Microwell-bottomed dishes maintained viability and mass of human islets for two weeks, which is significantly improved when compared to the conventional flat-bottomed dishes.


Asunto(s)
Islotes Pancreáticos , Humanos , Insulina , Control Glucémico , Hipoxia , Consumo de Oxígeno
7.
Biofabrication ; 15(1)2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36537072

RESUMEN

The need for maintaining cell-spheroid viability and function within high-density cultures is unmet for various clinical and experimental applications, including cell therapies. One immediate application is for transplantation of pancreatic islets, a clinically recognized treatment option to cure type 1 diabetes; islets are isolated from a donor for subsequent culture prior to transplantation. However, high seeding conditions cause unsolicited fusion of multiple spheroids, thereby limiting oxygen diffusion to induce hypoxic cell death. Here we introduce a culture dish incorporating a micropyramid-patterned surface to prevent the unsolicited fusion and oxygen-permeable bottom for optimal oxygen environment. A 400µm-thick, oxygen-permeable polydimethylsiloxane sheet topped with micropyramid pattern of 400µm-base and 200µm-height was fabricated to apply to the 24-well plate format. The micropyramid pattern separated the individual pancreatic islets to prevent the fusion of multiple islets. This platform supported the high oxygen demand of islets at high seeding density at 260 islet equivalents cm-2, a 2-3-fold higher seeding density compared to the conventional islet culture used in a preparation for the clinical islet transplantations, demonstrating improved islet morphology, metabolism and function in a 4 d-culture. Transplantation of these islets into immunodeficient diabetic mice exhibited significantly improved engraftment to achieve euglycemia compared to islets cultured in the conventional culture wells. Collectively, this simple design modification allows for high-density cultures of three-dimensional cell spheroids to improve the viability and function for an array of investigational and clinical replacement tissues.


Asunto(s)
Diabetes Mellitus Experimental , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Ratones , Animales , Oxígeno/metabolismo , Diabetes Mellitus Experimental/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Hipoxia/metabolismo
8.
Biomolecules ; 12(11)2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36358934

RESUMEN

Hypothermic (cold) preservation is a limiting factor for successful cell and tissue transplantation where cell swelling (edema) usually develops, impairing cell function. University of Wisconsin (UW) solution, a standard cold preservation solution, contains effective components to suppress hypothermia-induced cell swelling. Antifreeze proteins (AFPs) found in many cold-adapted organisms can prevent cold injury of the organisms. Here, the effects of a beetle AFP from Dendroides canadensis (DAFP-1) on pancreatic ß-cells preservation were first investigated. As low as 500 µg/mL, DAFP-1 significantly minimized INS-1 cell swelling and subsequent cell death during 4 °C preservation in UW solution for up to three days. However, such significant cytoprotection was not observed by an AFP from Tenebrio molitor (TmAFP), a structural homologue to DAFP-1 but lacking arginine, at the same levels. The cytoprotective effect of DAFP-1 was further validated with the primary ß-cells in the isolated rat pancreatic islets in UW solution. The submilligram level supplement of DAFP-1 to UW solution significantly increased the islet mass recovery after three days of cold preservation followed by rewarming. The protective effects of DAFP-1 in UW solution were discussed at a molecular level. The results indicate the potential of DAFP-1 to enhance cell survival during extended cold preservation.


Asunto(s)
Escarabajos , Animales , Ratas , Escarabajos/química , Escarabajos/metabolismo , Supervivencia Celular , alfa-Fetoproteínas/farmacología , Proteínas Anticongelantes/química , Glutatión/farmacología , Insulina/farmacología , Edema
9.
Pharmaceuticals (Basel) ; 15(5)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35631421

RESUMEN

Umbilical cord mesenchymal stem cell-derived extracellular vesicles (UC-MSC-EVs) have become an emerging strategy for treating various autoimmune and metabolic disorders, particularly diabetes. Delivery of UC-MSC-EVs is essential to ensure optimal efficacy of UC-MSC-EVs. To develop safe and superior EVs-based delivery strategies, we explored nuclear techniques including positron emission tomography (PET) to evaluate the delivery of UC-MSC-EVs in vivo. In this study, human UC-MSC-EVs were first successfully tagged with I-124 to permit PET determination. Intravenous (I.V.) and intra-arterial (I.A.) administration routes of [124I]I-UC-MSC-EVs were compared and evaluated by in vivo PET-CT imaging and ex vivo biodistribution in a non-diabetic Lewis (LEW) rat model. For I.A. administration, [124I]I-UC-MSC-EVs were directly infused into the pancreatic parenchyma via the celiac artery. PET imaging revealed that the predominant uptake occurred in the liver for both injection routes, and further imaging characterized clearance patterns of [124I]I-UC-MSC-EVs. For biodistribution, the uptake (%ID/gram) in the spleen was significantly higher for I.V. administration compared to I.A. administration (1.95 ± 0.03 and 0.43 ± 0.07, respectively). Importantly, the pancreas displayed similar uptake levels between the two modalities (0.20 ± 0.06 for I.V. and 0.24 ± 0.03 for I.A.). Therefore, our initial data revealed that both routes had similar delivery efficiency for [124I]I-UC-MSC-EVs except in the spleen and liver, considering that higher spleen uptake could enhance immunomodulatory application of UC-MSC-EVs. These findings could guide the development of safe and efficacious delivery strategies for UC-MSC-EVs in diabetes therapies, in which a minimally invasive I.V. approach would serve as a better delivery strategy. Further confirmation studies are ongoing.

10.
Pancreas ; 51(3): 234-242, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35584380

RESUMEN

OBJECTIVES: In pancreatic islet transplantation studies, bioluminescence imaging enables quantitative and noninvasive tracking of graft survival. Amid the recent heightened interest in extrahepatic sites for islet and stem cell-derived beta-like cell transplantations, proper understanding the nature of bioluminescence imaging in these sites is important. METHODS: Islets isolated from Firefly rats ubiquitously expressing luciferase reporter gene in Lewis rats were transplanted into subcutaneous or kidney capsule sites of wild-type Lewis rats or immunodeficient mice. Posttransplant changes of bioluminescence signal curves and absorption of bioluminescence signal in transplantation sites were examined. RESULTS: The bioluminescence signal curve dynamically changed in the early posttransplantation phase; the signal was low within the first 5 days after transplantation. A substantial amount of bioluminescence signal was absorbed by tissues surrounding islet grafts, correlating to the depth of the transplanted site from the skin surface. Grafts in kidney capsules were harder to image than those in the subcutaneous site. Within the kidney capsule, locations that minimized depth from the skin surface improved the graft detectability. CONCLUSIONS: Posttransplant phase and graft location/depth critically impact the bioluminescence images captured in islet transplantation studies. Understanding these parameters is critical for reducing experimental biases and proper interpretation of data.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Diagnóstico por Imagen , Supervivencia de Injerto , Humanos , Islotes Pancreáticos/diagnóstico por imagen , Trasplante de Islotes Pancreáticos/métodos , Mediciones Luminiscentes/métodos , Ratones , Ratas , Ratas Endogámicas Lew
11.
Cell Transplant ; 30: 9636897211052291, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34628956

RESUMEN

Prior to transplantation into individuals with type 1 diabetes, in vitro assays are used to evaluate the quality, function and survival of isolated human islets. In addition to the assessments of these parameters in islet, they can be evaluated by multiparametric morphological scoring (0-10 points) and grading (A, B, C, D, and F) based on islet characteristics (shape, border, integrity, single cells, and diameter). However, correlation between the multiparametric assessment and transplantation outcome has not been fully elucidated. In this study, 55 human islet isolations were scored using this multiparametric assessment. The results were correlated with outcomes after transplantation into immunodeficient diabetic mice. In addition, the multiparametric assessment was compared with oxygen consumption rate of isolated islets as a potential prediction factor for successful transplantations. All islet batches were assessed and found to score: 9 points (n = 18, Grade A), 8 points (n = 19, Grade B), and 7 points (n = 18, Grade B). Islets that scored 9 (Grade A), scored 8 (Grade B) and scored 7 (Grade B) were transplanted into NOD/SCID mice and reversed diabetes in 81.2%, 59.4%, and 33.3% of animals, respectively (P < 0.0001). Islet scoring and grading correlated well with glycemic control post-transplantation (P < 0.0001) and reversal rate of diabetes (P < 0.05). Notably, islet scoring and grading showed stronger correlation with transplantation outcome compared to oxygen consumption rate. Taken together, a multiparametric assessment of isolated human islets was highly predictive of transplantation outcome in diabetic mice.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 1/fisiopatología , Trasplante de Islotes Pancreáticos/métodos , Animales , Humanos , Ratones , Ratones SCID , Estudios Retrospectivos , Resultado del Tratamiento
12.
Mol Imaging Biol ; 23(2): 173-179, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33140260

RESUMEN

PURPOSE: The transplantation of pancreatic islets is a promising cell replacement therapy for type 1 diabetes. Subcutaneous islet transplantation is currently under investigation as a means to circumvent problems associated with standard intra-hepatic islet transplantation. As modifications are being developed to improve the efficacy of subcutaneous islet transplantation, it is important to have robust methods to assess engraftment. Experimentally, ATP-dependent bioluminescence imaging using luciferase reporter genes has been effective for non-invasively tracking engraftment. However, it was heretofore unknown if the bioluminescence of subcutaneously transplanted luciferase-expressing islet grafts correlates with diabetes reversal, a primary outcome of transplantation. PROCEDURES: A retrospective analysis was conducted using data obtained from subcutaneous islet transplantations in Lewis rats. The analysis included transplantations from our laboratory in which islet donors were transgenic rats ubiquitously expressing luciferase and recipients were wild type, streptozotocin-induced diabetic rats. Data from 79 bioluminescence scans were obtained from 27 islet transplantations during the post-transplant observation period (up to 6 weeks). The bioluminescence intensity of the subcutaneously transplanted grafts, captured after the intravenous administration of luciferin, was correlated with diabetes reversal. RESULTS: After subcutaneous transplantation, islet bioluminescence decreased over time, dropping > 50 % from 1 to 3 weeks post-transplant. Bioluminescence intensity in the early post-transplant phase (1-2 weeks) correlated with the subsequent reversal of diabetes; based on optimized bioluminescence cutoff values, the bioluminescence intensity of islets at 1 and 2 weeks predicted successful transplantations. However, intensity in the late post-transplant phase (≥ 4 weeks) did not reflect transplantation outcomes. CONCLUSIONS: Early-phase bioluminescence imaging of luciferase-expressing islets could serve as a useful tool to predict the success of subcutaneous islet transplantations by preceding changes in glucose homeostasis.


Asunto(s)
Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Glucosa/metabolismo , Supervivencia de Injerto/fisiología , Trasplante de Islotes Pancreáticos/métodos , Luciferasas/metabolismo , Tejido Subcutáneo/trasplante , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Modelos Animales de Enfermedad , Mediciones Luminiscentes/métodos , Masculino , Ratas , Ratas Endogámicas Lew , Estudios Retrospectivos
13.
Microvasc Res ; 132: 104070, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32890600

RESUMEN

PURPOSE: Subcutaneous tissue is a promising site for cell transplantation; advantages include minimally invasive procedures and easy post-transplant monitoring. However, limited vascularity is the major known challenge. To address this challenge, a prevascularized graft bed is prepared in recipients. We aimed to establish an improved, clinically applicable approach to promote prevascularization of the subcutaneous graft bed prior to cell transplantation. METHODS: We applied a conventional prevascularization approach by subcutaneously implanting nylon discs into the backs of Lewis rats. After disc implantation, we treated rats with or without intermittent normobaric 100% oxygen inhalation (1 h, twice a day, for consecutive 7 days). We used histology to compare vascular density between the oxygen-treated or control groups. To assess the functional effects of prevascularization, we transplanted three hundred islets isolated from luciferase-transgenic Lewis rats into the oxygen-treated or control wild type Lewis recipients, then used bioluminescence imaging to track engraftment for 4 weeks. RESULTS: Oxygen treatment significantly augmented prevascularization in the subcutaneous site compared to controls. Islet transplantation into prevascularized graft beds demonstrated significant improvement in engraftment efficiency in oxygen-treated recipients compared to controls at 2-4 weeks post-transplantation. CONCLUSION: Combining intermittent normobaric 100% oxygen inhalation with a conventional vascularization approach promotes a functional vasculature within a week. A simple approach using normobaric oxygen has the potential for translation into clinical application in subcutaneous site cell transplantations.


Asunto(s)
Supervivencia de Injerto , Trasplante de Islotes Pancreáticos , Neovascularización Fisiológica , Oxígeno/administración & dosificación , Tejido Subcutáneo/irrigación sanguínea , Acondicionamiento Pretrasplante/métodos , Administración por Inhalación , Animales , Esquema de Medicación , Ratas Endogámicas Lew , Factores de Tiempo
14.
Pancreas ; 49(5): 650-654, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32433402

RESUMEN

OBJECTIVES: The aim of this study was to determine whether the size of islets isolated from human donors-measured pretransplant-impacts transplantation outcomes in diabetic mice. METHODS: Human islets (1200 islet equivalents) were transplanted into the kidney capsules of streptozotocin-induced diabetic immunodeficient mice. Data from a total of 174 mice that received islets from 45 isolations were analyzed to evaluate the correlation between pretransplant islet size and posttransplant diabetes reversal. Fluorescent images of islet clusters were used to categorize individual islets by size (small, 50-150 µm; medium, 150-250 µm; large, >250 µm), and the fractions of islets in each category were calculated. RESULTS: The fraction of large islets negatively correlated with diabetes reversal rates. Mice that received islet grafts containing 0% to 5%, 5% to 10%, and more than 10% large islets had diabetes reversal rates of 75%, 61%, and 45%, respectively (P = 0.0112). Furthermore, mice that exhibited diabetes reversal received smaller fractions of large islets than mice that did not (5.5% vs 8.0%, P = 0.0003). Intriguingly, the fractions of medium and small islets did not correlate with diabetes reversal outcomes. CONCLUSIONS: The fraction of large islets is a sensitive predictor of human islet transplantation outcomes in diabetic mice.


Asunto(s)
Diabetes Mellitus Experimental/cirugía , Supervivencia de Injerto/fisiología , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/fisiología , Animales , Humanos , Ratones Endogámicos NOD , Ratones SCID , Evaluación de Resultado en la Atención de Salud , Estudios Retrospectivos , Trasplante Heterólogo
15.
Cell Transplant ; 29: 963689720919444, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32410459

RESUMEN

In clinical and experimental human pancreatic islet transplantations, establishing pretransplant assessments that accurately predict transplantation outcomes is crucial. Conventional in vitro viability assessment that relies on manual counting of viable islets is a routine pretransplant assessment. However, this method does not correlate with transplantation outcomes; to improve the method, we recently introduced a semi-automated method using imaging software to objectively determine area-based viability. The goal of the present study was to correlate semi-automated viability assessment with posttransplantation outcomes of human islet transplantations in diabetic immunodeficient mice, the gold standard for in vivo functional assessment of isolated human islets. We collected data from 61 human islet isolations and 188 subsequent in vivo mouse transplantations. We assessed islet viability by fluorescein diacetate and propidium iodide staining using both the conventional and semi-automated method. Transplantations of 1,200 islet equivalents under the kidney capsule were performed in streptozotocin-induced diabetic immunodeficient mice. Among the pretransplant variables, including donor factors and post-isolation assessments, viability measured using the semi-automated method demonstrated a strong influence on in vivo islet transplantation outcomes in multivariate analysis. We calculated an optimized cutoff value (96.1%) for viability measured using the semi-automated method and showed a significant difference in diabetes reversal rate for islets with viability above this cutoff (77% reversal) vs. below this cutoff (49% reversal). We performed a detailed analysis to show that both the objective measurement and the improved area-based scoring system, which distinguished between small and large islets, were key features of the semi-automated method that allowed for precise evaluation of viability. Taken together, our results suggest that semi-automated viability assessment offers a promising alternative pretransplant assessment over conventional manual assessment to predict human islet transplantation outcomes.


Asunto(s)
Diabetes Mellitus Experimental/terapia , Trasplante de Islotes Pancreáticos/métodos , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Resultado del Tratamiento
16.
Transpl Int ; 33(7): 806-818, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32198960

RESUMEN

Pancreatic islet transplantation into the liver is an effective treatment for type 1 diabetes but has some critical limitations. The subcutaneous site is a potential alternative transplant site, requiring minimally invasive procedures and allowing frequent graft monitoring; however, hypoxia is a major drawback. Our previous study without scaffolding demonstrated post-transplant graft aggregation in the subcutaneous site, which theoretically exacerbates lethal intra-graft hypoxia. In this study, we introduce a clinically applicable subcutaneous islet transplantation platform using a biodegradable Vicryl mesh scaffold to prevent aggregation in a diabetic rat model. Islets were sandwiched between layers of clinically proven Vicryl mesh within thrombin-fibrin gel. In vitro, the mesh prevented islet aggregation and intra-islet hypoxia, which significantly improved islet viability. In vivo rat syngeneic islet transplantations into a prevascularized subcutaneous pocket demonstrated that the mesh significantly enhanced engraftment, as measured by assays for graft survival and function. Histological examination at 6 weeks showed well-vascularized grafts sandwiched in a flat shape between the mesh layers. The biodegradable mesh was fully absorbed by three months, which alleviated chronic foreign body reaction and fibrosis, and supported long-term graft maintenance. This simple graft shape modification approach is an effective and clinically applicable strategy for improved subcutaneous islet transplantation.


Asunto(s)
Diabetes Mellitus Experimental , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Glucemia , Diabetes Mellitus Experimental/cirugía , Supervivencia de Injerto , Poliglactina 910 , Ratas , Mallas Quirúrgicas
17.
Exp Gerontol ; 128: 110739, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31634542

RESUMEN

Pancreatic islets consist of several endocrine cell types that maintain glucose homeostasis. Type 1 diabetes (T1D) results from autoimmune-mediated destruction of insulin producing beta cells in pancreatic islets. Islet transplantation is a treatment for certain individuals with T1D. Islet transplantation in rodents, as an experimental model of the clinical scenario, requires consistency of islet quantity and quality to obtain reproducible results. In this study, we investigated the yield and function of the isolated islets from rats of different ages. Pancreata were harvested from young (10-20 week-old), intermediate (21-40 week-old) and old (>41 week-old) male rats and islets were isolated using a standard protocol. Islet number, morphometry, viability, function, and metabolism were characterized. Islet yield, normalized to body weight, decreased as a function of increasing donor age. Islets from pancreata from young animals were larger and less fragmented compared to islets from organs from intermediate and older animals. Islet viability following overnight culture was the same for islets derived from young and intermediate aged donors but less for islets from old donors. Glucose-stimulated insulin secretion was decreased in islets from older donors. Islet metabolism following glucose challenge, as measured by oxygen consumption, revealed that islets from old donors were metabolically slower and lagged in response to glucose-stimuli. These data demonstrate that increasing donor age has a negative impact on isolated islet yield and quality.


Asunto(s)
Islotes Pancreáticos/fisiología , Donantes de Tejidos , Factores de Edad , Animales , Peso Corporal , Secreción de Insulina , Masculino , Consumo de Oxígeno , Ratas , Ratas Endogámicas Lew
18.
Transplantation ; 103(2): 299-306, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29781952

RESUMEN

Islet transplantation is a promising treatment for type-1 diabetes; however, donor shortage is a concern. Even when a pancreas is available, low islet yield limits the success of transplantation. Islet culture enables pooling of multiple low-yield isolations into an effective islet mass, but isolated islets rapidly deteriorate under conventional culture conditions. Oxygen (O2) depletion in the islet core, which leads to central necrosis and volume loss, is one of the major reasons for this deterioration. METHODS: To promote long-term culture of human islets in PIM-R medium (used for islet research), we adjusted temperature (12°C, 22°C, and 37°C) and O2 concentration (21% and 50%). We simulated the O2 distribution in islets based on islet O2 consumption rate and dissolved O2 in the medium. We determined the optimal conditions for O2 distribution and volume maintenance in a 2-week culture and assessed viability and insulin secretion compared to noncultured islets. In vivo islet engraftment was assessed by transplantation into diabetic nonobese diabetic-severe combined immunodeficiency mouse kidneys. We validated our results using CMRL 1066 medium (used for clinical islet transplantation). RESULTS: Simulation revealed that 12°C of 50% O2 PIM-R culture supplied O2 effectively into the islet core. This condition maintained islet volume at greater than 90% for 2 weeks. There were no significant differences in viability and function in vitro or diabetic reversal rate in vivo between 2-week cultured and noncultured islets. Similar results were obtained using CMRL 1066. CONCLUSIONS: By optimizing temperature and O2 concentration, we cultured human islets for 2 weeks with minimal loss of volume and function.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Islotes Pancreáticos/citología , Oxígeno/farmacología , Adenosina Trifosfato/farmacología , Animales , Medios de Cultivo , Humanos , Islotes Pancreáticos/fisiología , Ratones , Temperatura
19.
Biofabrication ; 11(1): 015011, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30524058

RESUMEN

Cell transplantation is a promising treatment for complementing lost function by replacing new cells with a desired function, e.g. pancreatic islet transplantation for diabetics. To prevent cell obliteration, oxygen supply is critical after transplantation, especially until the graft is sufficiently re-vascularized. To supply oxygen during this period, we developed a chemical-/electrical-free implantable oxygen transporter that delivers oxygen to the hypoxic graft site from ambient air by diffusion potential. This device is simply structured using a biocompatible silicone-based body that holds islets, connected to a tube that opens outside the body. In computational simulations, the oxygen transporter increased the oxygen level to >120 mmHg within grafts; in contrast, a control device that did not transport oxygen showed <6.5 mmHg. In vitro experiments demonstrated similar results. To test the effectiveness of the oxygen transporter in vivo, we transplanted pancreatic islets, which are susceptible to hypoxia, subcutaneously into diabetic rats. Islets transplanted using the oxygen transporter showed improved graft viability and cellular function over the control device. These results indicate that our oxygen transporter, which is safe and easily fabricated, effectively supplies oxygen locally. Such a device would be suitable for multiple clinical applications, including cell transplantations that require changing a hypoxic microenvironment into an oxygen-rich site.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Trasplante de Islotes Pancreáticos/instrumentación , Islotes Pancreáticos/metabolismo , Oxígeno/metabolismo , Animales , Humanos , Islotes Pancreáticos/química , Trasplante de Islotes Pancreáticos/métodos , Masculino , Oxígeno/química , Ratas Endogámicas Lew
20.
Pancreas ; 47(9): 1093-1100, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30142118

RESUMEN

OBJECTIVES: Newport Green is a zinc-specific fluorescent dye developed to monitor cellular zinc transport. In pancreatic islets with zinc-rich ß-cells, Newport Green is expected to be useful as an islet-specific indicator for live imaging. However, the low penetration of Newport Green into islets hinders clear detection. The aim of this study was to develop a practical method of live islet imaging by using surfactants to enhance the penetration efficiency. METHODS: Surfactants (F127, Tween 20, and Triton X-100) were co-incubated with Newport Green for fluorescent imaging of live isolated human islet and nonislet tissues. Toxicity, enhancement of Newport Green fluorescence, and effects on specificity to islets were examined. RESULTS: Newport Green fluorescent intensity was increased after co-incubation with all surfactants tested (0.2-3.2 mM); however, surfactants were toxic to islets at high concentrations. Within the nontoxic range, high specificity to islets was observed when co-incubated with Tween 20 at 0.2-0.4 mM, compared with F127 and Triton X-100. This optimized range successfully distinguished islets from nonislet tissues using statistically calculated cutoff value of Newport Green fluorescent intensity. CONCLUSIONS: Surfactants, particularly Tween 20 in the optimized range, effectively and selectively enhanced Newport Green fluorescence in live islets without increasing islet toxicity.


Asunto(s)
Colorantes Fluorescentes/química , Aumento de la Imagen/métodos , Islotes Pancreáticos/química , Tensoactivos/química , Humanos , Islotes Pancreáticos/diagnóstico por imagen , Mediciones Luminiscentes/métodos , Microscopía Fluorescente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA